Tell us about your production challenge

Hydrogen Production Equipment

Find innovative production technology for making hydrogen and connect directly with world-leading specialists.

blue white and yellow balloons

Industry sees a future powered by hydrogen fuel. The chemical element is an excellent energy carrier that could significantly reduce carbon dioxide emissions across sectors without upending economic models. The tricky part, however, is extracting it in its pure form.

Too much choice? Don't worry, we got you!

Connect directly with world leading technology suppliers.

We will connect you directly with a technology specialist that has experience with your process.

Contact us

Hydrogen generation expected to grow

Demand for pure hydrogen stands at about 70 million tons annually and is expected to increase exponentially in the 2020s. At least a dozen countries from Chile to Japan and from Australia to Finland have already set out plans to ramp up output. The European Union and the United States have also rolled out polices to encourage the production of hydrogen.

Hydrogen is already heavily used in specialized sectors such as ammonia and fertilizer production, in flat-glass industries, and oil refinery. Meanwhile, manufacturers are exploring new applications in commercial areas ranging from semi-conductors to fuel-cell cars to light bulbs.

Making blue hydrogen


Over three-fourths of  hydrogen production is generated from natural gas, particularly methane, using a method known as steam reforming. The gas is heated with steam to produce a mixture of chemicals from which hydrogen is then filtered out. Although efficient, this technique raises concerns about carbon dioxide emissions during the process. More producers are turning to Carbon Capture, Utilization & Storage (CCUS) systems to contain CO2 release, generating what is referred to as blue hydrogen.


Extracting green hydrogen by electrolysis

Another way of extracting hydrogen is by ‘water-splitting’ – separating oxygen from hydrogen using electricity as an energy source. An electrolyzer inserted in water converts the H2O into distinct hydrogen (H2) and oxygen (O) atoms, recovering the hydrogen gas. If the procedure is powered by low-carbon sources such as renewable energy or biofuels, hydrogen generated by alkaline water electrolysis is classified as green hydrogen.

Handling and shipping hydrogen energy is a barrier


The technology for producing green renewable hydrogen is already available and prices for renewable energy are becoming more competitive, but the handling of hydrogen comes with a raft of legal and technical limitations.


The chemical is highly explosive and its small particles make it more difficult to contain, making distribution of the gas less viable over long distances. Shipments may be liquefied, but the process of re-gasification brings new safety concerns.


Choosing to produce hydrogen on-site as a solution over your traditional supply chain

As the simplest and the most abundant element in the universe, hydrogen offers tremendous potential, but generating and controlling it requires specialized know-how.

Industrial suppliers are introducing new ways to make processes safer and more widely applicable. Manufacturers with more intense usage needs are exploring captive systems that generate hydrogen on-site. Companies producing fertilizer, cement, or glass are actively investing in on-site solution and storing surplus hydrogen for future use or to sell it back to the grid.

Fulfilling the promise of hydrogen


The versatility of hydrogen technologies make it an excellent driver of the green economy. Converting to hydrogen power is relatively uncomplicated and it does not result in any major disruptions for commerce whether manufacturing, agriculture, construction or transportation.


With ambitious international targets to cut greenhouse gas emissions across industries and regions, the coming decades are developing into the era of hydrogen.


Which hydrogen technology do you need?

Hydrogen compression solution for refueling stations

Hydrogen compression solution for refueling stations

In high-demand scenarios like hydrogen refueling or storage stations,…

Hydrogen gas safety system for high-temperature tube furnaces

Hydrogen gas safety system for high-temperature tube furnaces

Handling hydrogen gas in high-temperature tube furnaces req…

Plug & play water to hydrogen generator

Plug & play water to hydrogen generator

One of the highest volume industrial gases, hydrogen serves a wide range of applicat…

Containerized hydrogen upgrading system

Containerized hydrogen upgrading system

Usually, all spent protective gas is vented from metal treatment processes, such as …

Plug and play natural gas to hydrogen generator

Plug and play natural gas to hydrogen generator

Hydrogen is an all-purpose element and can be simply defined as energy’s S…

Water purification system for Pem electrolyser

Water purification system for Pem electrolyser

Hydrogen electrolysis processes require consistent and high-purity water to …

Synthesis gas waste heat boiler for ammonia plants

Synthesis gas waste heat boiler for ammonia plants

In ammonia production plants, managing the immense heat generated durin…

Gas recovery for the glass industry

Gas recovery for the glass industry

A reliable and constant supply of industrial gases is essential in producing quality fla…

Industrial carbon capture system for flue gas

Industrial carbon capture system for flue gas

In industries where large quantities of flue gases are produced, reducing CO2…

Marine loading arm

Marine loading arm

A hose or loading arm is needed when you load or unload fluids from a ship or transfer fluids between vesse…

Let's talk about your project!

Tell us about your production challenge and connect directly with leading manufacturers worldwide
All your data is kept confidential